³¹P NMR Study on Some Phosphorus-Containing Compounds

Zhen XU, Ji Liang SHI*, Xin CHEN, Xi Kui JIANG

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032

Abstract: ³¹P NMR has become a widely applied spectroscopic probe of the structure of phosphorus-containing compounds. Meanwhile, the application of ³¹P NMR has been rapidly expanded to biochemistry and medicinal chemistry of phosphorus-containing compounds because the growing importance of the phosphorus compounds is now widely realized. We report here the results of ³¹P NMR study on some phosphorus-containing compounds, namely, O-alkyl O-4-nitrophenyl methyl phosphonates with different alkyl chain-length (**MePO-n**), 4-nitrophenyl alkylphenylphosphinates with different alkyl chain-length (**PhP-n**), diethyl phosphono- acetonitrile anion and diethyl phosphite anion. Our results indicate that ³¹P NMR can not only be applied to not only the study of the hydrolytic reactions of MePO-8 and PhP-8 but also be applied to the study of the presence of the anions of diethylphosphonoacetonitrile and diethyl phosphite in nucleophilic reactions.

Keywords: ³¹P NMR, phosphorus-containing compounds, nucleophilic reaction.

In view of the facts that the phenomena of aggregation are inseparably related to life processes and that phosphorus-containing compounds are one of the essential building blocks of life, we have studied the aggregation behavior of some phosphonates and phosphinates¹. The application of NMR to the problems in chemistry has become rather popular. In phosphorus-containing compounds, phosphorus is a central or backbone atom in molecular structures. ³¹P NMR is of importance and special value in phosphorus chemistry. But, ³¹P NMR of phosphorus-containing compounds is very complicated² because in these compounds, phosphorus is multivalent *etc.*. Normally, phosphorus has two stable valence states, *i.e.*, trivalent and pentavalent. Besides that, in phosphorus acid and its monoalkyl ester and dialkyl ester, there are tautomerization equilibriums, *i.e.*,

 $(HO)_2P(O)H \iff (HO)_3P \text{ and } (RO)_2P(O)H \iff (RO)_2POH.$

Furthermore, there are three-, four-, five- and six- coordinated phosphorus compounds, *i.e.*, PCl₃, POCl₃, PCl₅, PCl₆. In addition, there is the polyphosphate, in which phosphorus appears in the molecular backbone, *etc.* However, there is also no convenient quantitative correlation between the chemical shift of ³¹P NMR and the nature of the atoms or groups bonded to phosphorus atom. Meanwhile, it is interesting to note that in the Horner-Emmons modification of the Wittig reaction⁴ and the nucleophilic reaction^{5,6}, the anions of some phosphorus-containing compounds, namely, diethyl phosphonoacetonitrile anion and diethyl phosphite anion, play important roles in the

Zhen XU et al.

reactions. The Horner-Emmons modification of the Wittig reaction of aldehydes and ketones with the anions of substituted diethyl phosphonoacetonitrile to synthesize α , β -unsaturated nitriles can be accomplished in excellent yields⁴. Aryl iodides react rapidly with potassium dialkyl phosphates, (RO)₂PO⁻K⁺ in liquid ammonia under 350 nm irradiation to form dialkyl arylphosphonates in 87-96% yield^{5,6}. Dialkyl phosphite anion is an excellent nucleophile. Consequently, it is necessary to accumulate empirical data on ³¹P NMR chemical-shifts of phosphorus-containing compounds. The structures of some phosphorus-containing compounds used in present work are shown in **Scheme 1**.

Experimental

MePO-n, **PhP-n**, **PhPO-8** and **MeP-8** have been synthesized in our laboratory and reported elsewhere¹. Diethyl phosphonoacetonitrile was purchased from Aldrich Co. and used without further purification. Diethyl phosphite was obtained from the Department of Heteroatom Chemistry of Shanghai Institute of Organic Chemistry as a gift.

Physical measurements

³¹P NMR spectra were obtained on a Varian FX-90Q or DRX 400 Bruker Co. spectrometer with 85% H₃PO₄ as the external standard. Chemical shifts (δ) are expressed in ppm. ¹H NMR was measured with Bruker AM 300 NMR spectrometer. The experimental uncertainty is less than 2%. The measurements of hydrolytic rate constants of **PhP-8** and **MePO-8** in DX-H₂O buffer (which is a 0.064 M NaOH + 0.05 M KCl) at Φ =0.05 were performed on Perkin-Elmer 559 or Perkin-Elmer Lambda 5 UV-Vis spectrometers equipped with a thermostated cell holder at 35°C by monitoring the formation of the *p*-nitrophenol anion at 410nm, as previously described⁷. Φ is the

volume fraction of the organic solvent in the binary aquiorgano solvent.

Results and Discussion

In ³¹P NMR, a more positive chemical shift corresponds to a upfield shift^{2,8}, and corresponds to a higher charge density on phosphorus atom. **Table 1** indicates ³¹P chemical shifts of **MePO-n**, **PhP-n**, **PhPO-8** and **MeP-8** in CDCl₃. From these data, the following conclusions might be deduced:

- 1) The ³¹P chemical shifts for **MePO-n** and **PhP-n** are independent of the alkyl chain-length within experimental uncertainty.
- 2) The relative effects of Me and Ph can be found by comparing **MePO-8** (δ =28.24) with **PhPO-8** (δ = 15.80), or **MeP-8** (δ =63.37) with **PhP-8** (δ =50.16). These results show that the electron-pair donating ability of the methyl group is larger than that of phenyl group.
- 3) Although the donating ability of the methyl group is larger than that of the phenyl group, the δ -value (≈ 28) of MePO-n is still smaller than that ($\delta \approx 50$) of the PhP-n. This indicates that their chemical shift depends mainly on the nature of the atom directly bonded to the phosphorus atom, in other words, the electron-pair accepting ability of the alkoxy group is much larger than that of the alkyl group.

Table 1³¹P NMR chemical shift (δ, ppm) of **MePO-n**, **PhP-n**, O-octyl O-4-nitrophenyl phenylphosphonate (**PhPO-8**) and 4-nitrophenyl octylmethylphosphinate (**MeP-8**) with 85% H₃PO₄ as the external standard.

Phosphorus-containing compounds	Chemical shift (ppm)	Phosphorus-containing compounds	Chemical shift (ppm)
MePO-4	28.10	PhP-4	49.99
MePO-8	28.24	PhP-8	50.16
MePO-12	28.14	PhP-10	50.28
MePO-16	28.24	PhP-16	50.23
PhPO-8	15.80	MeP-8	63.37

The hydrolytic rate constants of **PhP-8** and **MePO-8** have been measured in Φ =0.05 DX-H₂O, which is an aqueous buffer (0.064 M NaOH+0.05 M KCl). In these experiments, the concentration of **PhP-8** is 9.59×10^{-6} M and the concentration of **MePO-8** is 9.93×10^{-6} M. These concentrations are less than their critical aggregate concentrations (CAgC) in Φ =0.05 DX-H₂O. The k_{ob} of **PhP-8** is 7.11×10^{-3} S⁻¹ and the k_{ob} of **MePO-8** is 6.60×10^{-2} S⁻¹. The k_{ob} of **PhP-8** is less than that of **MePO-8** because the P-atom of **MePO-8** is more electron-pair deficient, thus more prone to nucleophilic attack than that of **PhP-8**. This result is consistent with the ³¹P NMR data.

Forthermore, the existence of a carbanion intermediate **V** has been proposed ⁴ but not proven. In the reaction of diethylphosphonoacetonitrile with NaH, we have now demonstrated its presence by the observation of the ³¹P NMR spectrum of **V**. It shows a singlet peak with δ =43.413 ppm in DMSO-d₆. But, in DMSO-d₆ the diethylphos-phonoacetonitrile has δ =17.253 ppm. Therefore, by the change of ³¹P NMR chemical shift, the presence of this anion can be demonstrated. It is worthy to note that there is a solvent effect in the measurement of ³¹P NMR of diethylphosphonoacetonitrile, namely, in CDCl₃ its δ =15.027 ppm and in DMSO-d₆ its δ =17.253 ppm. Zhen XU et al.

J.F. Bunnett *et al.*^{5,6} have reported diethyl phosphite anion as an excellent nucleophile in S_{RN} 1. The precursor of diethyl phosphite anion is diethyl phosphite. It is well known that there is a tautomeric equilibrium for diethyl phosphite., namely,

 $(C_2H_5O)_2P(O)H$ ($C_2H_5O)_2POH$). We have now demonstrated the existence of **VI** by observation of the ³¹P NMR spectrum. ³¹P NMR spectrum of diethyl phosphite shows a ¹H – ³¹P split. There are doublet-doublet peaks in ³¹P NMR spectrum . The δ values are 5.127 ppm and 8.760 ppm . Fortunately, diethyl phosphite reacts with NaH in DMSO-d₆ to form the diethyl phosphite anion (**VI**). ³¹P NMR spectrum of this anion in DMSO-d₆ shows a singlet peak with δ =-139.59 ppm. This result indicates that the diethyl phosphite anion (C_2H_5O)₂PO'Na⁺ has formed. The results may serve as useful reference data for other phosphorus-containing compounds

References

- 1. X.K. Jiang, J.L. Shi, X.Chen, Langmuir, 1996, 12, 3881.
- M.M. Crutchfield, C.H. Dungan, J.H. Letcher, V. Mark, J.R. Van Wazer, *Topics in phosphorus chemistry*, John Wiley & Sons Inc. ,1967, 5, p177.
- 3. L.W. Daasch, J. Am. Chem. Soc., 1958, 80, 5301.
- 4. R.R. Wroble, D.S. Watt, J. Org. Chem., 1976, 41, 2939.
- 5. J.F. Bunnett , X. Creary, J. Org. Chem., 1974, 39, 3612.
- 6. S. Hoz, J. F. Bunnett, J. Am. Chem. Soc., 1977, 99, 4690.
- 7. X.K. Jiang, Y.Z. Hui, W.Q. Fan, J. Am. Chem. Soc., 1984, 106, 3839.
- 8. M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*, Georg. Thieme Verlag, **1979**, p266.

Received 26 May 2000

1060